人工智能如何做到可信、可用?专家热议:把责任归结到个人******
中新网北京12月11日电 人工智能治理的理想状态,是人工智能技术能做到可知、可信、可控、可用。而在现实中,人工智能技术手段虽然非常强大,但是离完美、完善仍有相当的距离。从技术角度和技术应用角度,人工智能的发展如何做到扬长避短?
近日,在2022人工智能合作与治理国际论坛上,专家围绕该话题进行了讨论。
中国工程院院士、鹏城实验室主任高文认为,现阶段很多技术还处于发展的过程中,如果过早地说这个不能用、那个不能用,可能会抑制技术本身的发展。但反过来,如果什么都不管,也不行。
“因此,现在更多还是从道德层面多进行引导。同时,做技术的人,也要尽量把一些可能的风险、抑制工具,即约束风险的工具,尽快想明白。自己也做,同时号召大家做,两者结合。”他说。
清华大学智能产业研究院国强教授、首席研究员聂再清认为,我们要保证能够创新,但同时不能让创新对我们的生活产生破坏性的影响,最好的办法就是把责任归结到个人。
“技术的背后是有人在控制的。这个人应该时刻保证工具或创新在危险可控的范围内。同时,社会也要进行集体的监督,发布某个产品或技术,要能够召回、撤销。在创新和监管之间,当然是需要平衡的,但归根结底,还是要把责任落实到个人身上。”他指出。
瑞莱智慧RealAI公司联合创始人、首席执行官田天补充道,在技术可解释性方面,需要去进行技术发展与相应应用场景的深度结合。大家需要一个更加可解释的AI模型,或者更加可解释的AI应用。
“但我们真正想落地的时候,会发现每个人想要的可解释性完全不一样。比如:模型层面的可解释,可能从研发人员角度觉得已经很好了,但是从用户的角度是看不懂的,这需要一些案例级的解释,甚至通过替代模型等方式进行解释。因此,在不同领域,需要不同的可解释能力,以及不同的可解释级别,这样才能让技术在应用场景发挥最好的作用。”他说。
将伦理准则嵌入到人工智能产品与系统研发设计中,现在是不是时候?
高文认为,人工智能软件、系统应该有召回的功能。如果社会或伦理委员会发现这样做不对,可能带来危害,要么召回,要么撤销。
高文说,应用的开发者,系统提交或者最终用户让他去调整的时候,他应该有责任。如果开发者发现已经踩线了,应该给他一个保护机制,他可以拒绝后面的支持和维护,甚至可以起诉。“不能只说哪一方不行,光说是开发者的责任,他可能觉得冤枉,因为他只提供工具,但有时候是有责任的,只是说责任怎么界定。”
“在人工智能的发展过程中,一方面要建立一些红线。”田天建议,比如,对于人工智能的直接滥用,造假、个人隐私泄露,甚至关联到国家安全、生命安全的,这些领域一定要建立相关红线,相应的惩罚规定一定要非常清晰,这是保证人工智能不触犯人类利益的基本保障。
“在这个基础上,对于处于模糊地带的,希望能留有更多空间。不光是从限制角度,也可以从鼓励更加重视伦理的角度,促进合规地发展。”田天称。
2022人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院(I-AIIG)承办,中国新闻网作为战略合作伙伴,联合国开发计划署(UNDP)、联合国教科文组织(UNESCO)等国际组织、国内外学术机构支持。(中新财经)
张宏江:人工智能如何帮人类进入科研新范式?****** 中新网北京12月10日电 “人工智能能够如何帮助我们进入科研的新范式?” 这是美国国家工程院外籍院士、北京智源人工智能研究院理事长张宏江,12月9日在2022人工智能合作与治理国际论坛的主题论坛“人工智能引领韧性治理与未来科技”中,抛出的一个问题。 2022人工智能合作与治理国际论坛由清华大学主办、清华大学人工智能国际治理研究院(I-AIIG)承办,中国新闻网作为战略合作伙伴,联合国开发计划署(UNDP)、联合国教科文组织(UNESCO)等国际组织、国内外学术机构支持。 美国国家工程院外籍院士、北京智源人工智能研究院理事长张宏江,在2022人工智能合作与治理国际论坛的主题论坛“人工智能引领韧性治理与未来科技”上发言。主办方供图张宏江认为,回顾人类科学发展的历史,不同发展阶段经历了不同的科学发现范式。 “几千年前,人类就通过观察、实验来描述自然现象。比如‘日心说’是通过对天象的观察来对整个宇宙。随着科学的发展,四五百年前,理论模型范式出现。人们通过对某一现象的观察总结出理论,从而指导新的科学研究。五六十年前,尤其当大型计算机出现后,面临更复杂的问题,比如天气预报、地震模拟,人们无法再用简单的物理公式、简单的方程构建完整的模拟系统研究理论,人们引入了计算范式,用计算来模拟的方式做科学研究。到二十年前,我们进入大数据时代,科研中积累的大量数据可以进一步驱动物理模型。” “今天,我们进入了一个新的科研范式。”张宏江说,人工智能经过多年发展,尤其过去15年深度学习的发展,使得人们能够给科学研究推出一个新的范式。“这个范式是AI驱动的范式。实际是用深度学习的算法,直接从数据中建立新的模型,其背后是数据、模型、算法和算力。” 张宏江指出,深度学习在革命性地推动了语言、图像和视频处理、识别和应用之后,正在迅速地改变科学研究的范式,这种新的范式就是物理世界的“数字化+自动化+深度学习”。 他说,“今天我们进入了一个黄金期,新的设计范式,都可以借用深度学习的方法进行赋能。” 张宏江坦言,未来十年蕴含着科学发展与产业创新机会,包括数据、模型、算法、算力,其核心是背后的跨学科人才。(完)
|